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Recent efforts to design personalized cancer immunother- 
apies use predicted neoantigens. Typically, to evaluate 

neoantigens from genomic sequencing data, the raw reads 
are aligned to the Human Reference Genome, and somatic 
variants are identified by comparison of tumor to normal 
read alignments, followed by variant annotation and predic- 
tion of strong-binding neoantigenic peptides. This process 
typically assumes that the reference genome sequence sur- 
rounding each somatic variant is representative of the pa- 
tient’s genome, and does not account for the effect of nearby 
variants (somatic or germline) in the neoantigenic sequence. 
Because the accuracy of neoantigen identification has impor- 
tant implications for many clinical trials, there is a need for 
patient-specific inclusion of proximal variants to address this 
previously oversimplified assumption. 

We evaluated somatic variants from 430 tumors to deter- 
mine the impact of proximal alterations on neoantigens. With- 
out incorporating proximal variant correction for MHC class I 
peptides, the overall FDR and FNR across peptides of lengths 
8–11 were estimated as 0.069 (6.9%) and 0.026 (2.6%), re- 
spectively. Thus, for “uncorrected” neoantigen identification in 

100 individuals, we can expect that approximately 51 individ- 
uals would receive a suboptimal vaccine due to receiving a 

neoantigen with an incorrect peptide sequence, 23 would re- 
ceive a suboptimal vaccine due to missing a strong-binding 

neoantigen, and 62 would receive a suboptimal vaccine due 

to at least one of these causes. 
We also added this improvement in our computational 

toolkit - pVACtools, that aids in neoantigen prediction from 

somatic alterations (pVACseq and pVACfuse), pr ior itization 

and selection using a graphical interface (pVACviz), and de- 
termination of optimal order of candidates in a DNA vaccine 

(pVACvector). 
The results from pVACtools analyses are already being 

used in cancer immunology studies, and ongoing clinical tri- 
als. We anticipate that pVACtools will make such analyses 
more robust, reproducible, and facile. 
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Introduction: During cancer genomic analysis, accurate 

identification of somatic variants typically requires manual 
review of aligned read sequences after automated variant 
calling. However, this process is costly, time-consuming, 
and poorly standardized. Here we describe a systematized 

method for somatic variant refinement using a manual re- 
view standard operating procedure (SOP) and an auto- 
mated deep learning model (DeepSVR- https://github.com/ 
griffithlab/DeepSVR ). 

Methods: First, the SOP was developed using 4 different 
calls and 19 tags. The SOP was validated by having 4 individ- 
ual classify variants prior to, and after, reading the SOP. Sec- 
ond, the DeepSVR algorithm was developed using sequenc- 
ing data from 41,000 variants derived from 440 samples. Per- 
formance was validated using internal cross-validation, or- 
thogonal sequencing data, and independent testing sets. 

Results: After reading the SOP, average accuracy 
in somatic variant identification increased by 16.7% (p- 
value = 0.0298) and average inter-reviewer agreement in- 
creased by 12.7% (p-value < 0.001). DeepSVR internal cross- 
validation showed a receiver operating characteristic (ROC) 
area under the curve (AUC) of 0.96. When employed on 

212,158 variants (107 samples) with orthogonal sequenc- 
ing, DeepSVR attained a ROC AUC of 0.94. When employed 

on 37 independent samples (17,356 variants), DeepSVR at- 
tained a ROC AUC range between 0.72-0.92. Reduced accu- 
racy was recovered (ROC AUC > 0.9) after incorporating 100- 
250 variants from the independent testing set and retraining 

the model. 
Conclusions: Combined use of the SOP and DeepSVR 

is recommended to standardize somatic variant refinement. 
These tools will hopefully improve variant refinement accu- 
racy and reduce inter-reviewer variability for variant calling 

and annotation. 
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